Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 24(7): 2080-2093, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38441218

RESUMEN

Pancreatic in vitro research is of major importance to advance mechanistic understanding and development of treatment options for diseases such as diabetes mellitus. We present a thermoplastic-based microphysiological system aiming to model the complex microphysiological structure and function of the endocrine pancreas with concurrent real-time read-out capabilities. The specifically tailored platform enables self-guided trapping of single islets at defined locations: ß-cells are assembled to pseudo-islets and injected into the tissue chamber using hydrostatic pressure-driven flow. The pseudo-islets can further be embedded in an ECM-like hydrogel mimicking the native microenvironment of pancreatic islets in vivo. Non-invasive real-time monitoring of the oxygen levels on-chip is realized by the integration of luminescence-based optical sensors to the platform. To monitor insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, an automated cycling of different glucose conditions is implemented. The model's response to glucose stimulation can be monitored via offline analysis of insulin secretion and via specific changes in oxygen consumption due to higher metabolic activity of pseudo-islets at high glucose levels. To demonstrate applicability for drug testing, the effects of antidiabetic medications are assessed and changes in dynamic insulin secretion are observed in line with the respective mechanism of action. Finally, by integrating human pancreatic islet microtissues, we highlight the flexibility of the platform and demonstrate the preservation of long-term functionality of human endocrine pancreatic tissue.


Asunto(s)
Insulina , Islotes Pancreáticos , Humanos , Insulina/metabolismo , Páncreas , Glucosa/análisis , Secreción de Insulina
2.
Adv Sci (Weinh) ; 9(18): e2104451, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35466539

RESUMEN

Obesity and associated diseases, such as diabetes, have reached epidemic proportions globally. In this era of "diabesity", white adipose tissue (WAT) has become a target of high interest for therapeutic strategies. To gain insights into mechanisms of adipose (patho-)physiology, researchers traditionally relied on animal models. Leveraging Organ-on-Chip technology, a microphysiological in vitro model of human WAT is introduced: a tailored microfluidic platform featuring vasculature-like perfusion that integrates 3D tissues comprising all major WAT-associated cellular components (mature adipocytes, organotypic endothelial barriers, stromovascular cells including adipose tissue macrophages) in an autologous manner and recapitulates pivotal WAT functions, such as energy storage and mobilization as well as endocrine and immunomodulatory activities. A precisely controllable bottom-up approach enables the generation of a multitude of replicates per donor circumventing inter-donor variability issues and paving the way for personalized medicine. Moreover, it allows to adjust the model's degree of complexity via a flexible mix-and-match approach. This WAT-on-Chip system constitutes the first human-based, autologous, and immunocompetent in vitro adipose tissue model that recapitulates almost full tissue heterogeneity and can become a powerful tool for human-relevant research in the field of metabolism and its associated diseases as well as for compound testing and personalized- and precision medicine applications.


Asunto(s)
Tejido Adiposo Blanco , Tejido Adiposo , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Humanos , Microfluídica , Obesidad/metabolismo
3.
Open Biol ; 12(3): 210333, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35232251

RESUMEN

Non-clinical models to study metabolism including animal models and cell assays are often limited in terms of species translatability and predictability of human biology. This field urgently requires a push towards more physiologically accurate recapitulations of drug interactions and disease progression in the body. Organ-on-chip systems, specifically multi-organ chips (MOCs), are an emerging technology that is well suited to providing a species-specific platform to study the various types of metabolism (glucose, lipid, protein and drug) by recreating organ-level function. This review provides a resource for scientists aiming to study human metabolism by providing an overview of MOCs recapitulating aspects of metabolism, by addressing the technical aspects of MOC development and by providing guidelines for correlation with in silico models. The current state and challenges are presented for two application areas: (i) disease modelling and (ii) pharmacokinetics/pharmacodynamics. Additionally, the guidelines to integrate the MOC data into in silico models could strengthen the predictive power of the technology. Finally, the translational aspects of metabolizing MOCs are addressed, including adoption for personalized medicine and prospects for the clinic. Predictive MOCs could enable a significantly reduced dependence on animal models and open doors towards economical non-clinical testing and understanding of disease mechanisms.


Asunto(s)
Dispositivos Laboratorio en un Chip , Modelos Biológicos , Animales , Simulación por Computador
4.
Commun Biol ; 5(1): 52, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027657

RESUMEN

Disorders of the eye leading to visual impairment are a major issue that affects millions of people. On the other side ocular toxicities were described for e.g. molecularly targeted therapies in oncology and may hamper their development. Current ocular model systems feature a number of limitations affecting human-relevance and availability. To find new options for pharmacological treatment and assess mechanisms of toxicity, hence, novel complex model systems that are human-relevant and readily available are urgently required. Here, we report the development of a human immunocompetent Choroid-on-Chip (CoC), a human cell-based in vitro model of the choroid layer of the eye integrating melanocytes and microvascular endothelial cells, covered by a layer of retinal pigmented epithelial cells. Immunocompetence is achieved by perfusion of peripheral immune cells. We demonstrate controlled immune cell recruitment into the stromal compartments through a vascular monolayer and in vivo-like cytokine release profiles. To investigate applicability for both efficacy testing of immunosuppressive compounds as well as safety profiling of immunoactivating antibodies, we exposed the CoCs to cyclosporine and tested CD3 bispecific antibodies.


Asunto(s)
Productos Biológicos/farmacología , Coroides/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Procedimientos Analíticos en Microchip , Anticuerpos Biespecíficos/efectos de los fármacos , Anticuerpos Biespecíficos/metabolismo , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo
5.
Stem Cell Reports ; 16(9): 2242-2256, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525384

RESUMEN

Gene therapies using adeno-associated viruses (AAVs) are among the most promising strategies to treat or even cure hereditary and acquired retinal diseases. However, the development of new efficient AAV vectors is slow and costly, largely because of the lack of suitable non-clinical models. By faithfully recreating structure and function of human tissues, human induced pluripotent stem cell (iPSC)-derived retinal organoids could become an essential part of the test cascade addressing translational aspects. Organ-on-chip (OoC) technology further provides the capability to recapitulate microphysiological tissue environments as well as a precise control over structural and temporal parameters. By employing our recently developed retina on chip that merges organoid and OoC technology, we analyzed the efficacy, kinetics, and cell tropism of seven first- and second-generation AAV vectors. The presented data demonstrate the potential of iPSC-based OoC models as the next generation of screening platforms for future gene therapeutic studies.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Células Madre Pluripotentes Inducidas/citología , Dispositivos Laboratorio en un Chip , Organoides/metabolismo , Retina/metabolismo , Transducción Genética , Biomarcadores , Técnicas de Cultivo de Célula , Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Terapia Genética , Humanos , Organoides/citología , Retina/citología , Transgenes
6.
Adv Drug Deliv Rev ; 173: 281-305, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798643

RESUMEN

The advances in cancer immunotherapy come with several obstacles, limiting its widespread use and benefits so far only to a small subset of patients. One of the underlying challenges remains to be the lack of representative nonclinical models that translate to human immunity and are able to predict clinical efficacy and safety outcomes. In recent years, immunocompetent Cancer-on-Chip models emerge as an alternative human-based platform that enables the integration and manipulation of complex tumor microenvironment. In this review, we discuss novel opportunities offered by Cancer-on-Chip models to advance (mechanistic) immuno-oncology research, ranging from design flexibility to multimodal analysis approaches. We then exemplify their (potential) applications for the research and development of adoptive cell therapy, immune checkpoint therapy, cytokine therapy, oncolytic virus, and cancer vaccines.


Asunto(s)
Inmunoterapia , Dispositivos Laboratorio en un Chip , Neoplasias/terapia , Humanos , Neoplasias/inmunología
7.
Front Cell Dev Biol ; 9: 626805, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732695

RESUMEN

The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.

8.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503263

RESUMEN

The need for competent in vitro liver models for toxicological assessment persists. The differentiation of stem cells into hepatocyte-like cells (HLC) has been adopted due to its human origin and availability. Our aim was to study the usefulness of an in vitro 3D model of mesenchymal stem cell-derived HLCs. 3D spheroids (3D-HLC) or monolayer (2D-HLC) cultures of HLCs were treated with the hepatotoxic drug nevirapine (NVP) for 3 and 10 days followed by analyses of Phase I and II metabolites, biotransformation enzymes and drug transporters involved in NVP disposition. To ascertain the toxic effects of NVP and its major metabolites, the changes in the glutathione net flux were also investigated. Phase I enzymes were induced in both systems yielding all known correspondent NVP metabolites. However, 3D-HLCs showed higher biocompetence in producing Phase II NVP metabolites and upregulating Phase II enzymes and MRP7. Accordingly, NVP-exposure led to decreased glutathione availability and alterations in the intracellular dynamics disfavoring free reduced glutathione and glutathionylated protein pools. Overall, these results demonstrate the adequacy of the 3D-HLC model for studying the bioactivation/metabolism of NVP representing a further step to unveil toxicity mechanisms associated with glutathione net flux changes.


Asunto(s)
Biotransformación , Glutatión/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Nevirapina/farmacocinética , Diferenciación Celular , Línea Celular , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Células Madre Mesenquimatosas/citología , Solventes , Esferoides Celulares , Cordón Umbilical/citología , Xenobióticos/farmacología
10.
Eur J Pharm Sci ; 105: 47-54, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28487145

RESUMEN

Efavirenz is an anti-HIV drug that presents relevant short- and long-term central nervous system adverse reactions. Its main metabolite (8-hydroxy-efavirenz) was demonstrated to be a more potent neurotoxin than efavirenz itself. This work was aimed to understand how efavirenz biotransformation to 8-hydroxy-efavirenz is related to its short- and long-term neuro-adverse reactions. To access those mechanisms, the expression and activity of Cyp2b enzymes as well as the thiolomic signature (low molecular weight thiols plus S-thiolated proteins) were longitudinally evaluated in the hepatic and brain tissues of rats exposed to efavirenz during 10 and 36days. Efavirenz and 8-hydroxy-efavirenz plasma concentrations were monitored at the same time points. Cyp2b induction had a delayed onset in liver (p<0.001), translating into increases in Cyp2b activity in liver and 8-hydroxy-efavirenz plasma concentration (p<0.001). Moreover, an increase in S-cysteinyl-glycinylated proteins (p<0.001) and in free low molecular weight thiols was also observed in liver. A distinct scenario was observed in hippocampus, which showed an underexpression of Cyp2b as well as a decrease in S-cysteinylated and S-glutathionylated proteins. Additionally, the observed changes in tissues were associated with a marked increase of S-glutathionylation in plasma. Our data suggest that the time course of efavirenz biotransformation results from different mechanisms for its short- and long-term neurotoxicity. The difference in the redox profile between liver and hippocampus might explain why, despite being mostly metabolized by the liver, this drug is neurotoxic. If translated to clinical practice, this evidence will have important implications in efavirenz short- and long-term neurotoxicity prevention and management.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Benzoxazinas/farmacocinética , Síndromes de Neurotoxicidad/metabolismo , Alquinos , Animales , Fármacos Anti-VIH/efectos adversos , Fármacos Anti-VIH/sangre , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Benzoxazinas/efectos adversos , Benzoxazinas/sangre , Benzoxazinas/metabolismo , Biotransformación , Ciclopropanos , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP2B1/metabolismo , Hipocampo/metabolismo , Hígado/metabolismo , Masculino , Síndromes de Neurotoxicidad/sangre , Corteza Prefrontal/metabolismo , Ratas Wistar , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo , Compuestos de Sulfhidrilo/metabolismo
11.
Arch Toxicol ; 91(3): 1199-1211, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27417440

RESUMEN

The development of metabolically competent in vitro models is of utmost importance for predicting adverse drug reactions, thereby preventing attrition-related economical and clinical burdens. Using the antiretroviral drug nevirapine (NVP) as a model, this work aimed to validate rat hepatocyte 3D spheroid cultures as competent in vitro systems to assess drug metabolism and bioactivation. Hepatocyte spheroids were cultured for 12 days in a stirred tank system (3D cultures) and exposed to equimolar dosages of NVP and its two major Phase I metabolites, 12-OH-NVP and 2-OH-NVP. Phase I NVP metabolites were detected in the 3D cultures during the whole culture time in the same relative proportions reported in in vivo studies. Moreover, the modulation of SULT1A1 activity by NVP and 2-OH-NVP was observed for the first time, pointing their synergistic effect as a key factor in the formation of the toxic metabolite (12-sulfoxy-NVP). Covalent adducts formed by reactive NVP metabolites with N-acetyl-L-cysteine and bovine serum albumin were also detected by high-resolution mass spectrometry, providing new evidence on the relative role of the reactive NVP metabolites, 12-sulfoxy-NVP, and NVP quinone methide, in toxicity versus excretion pathways. In conclusion, these results demonstrate the validity of the 3D culture system to evaluate drug bioactivation, enabling the identification of potential biomarkers of bioactivation/toxicity, and providing new evidence to the mechanisms underlying NVP-induced toxic events. This model, integrated with the analytical strategies described herein, is of anticipated usefulness to the pharmaceutical industry, as an upstream methodology for flagging drug safety alerts in early stages of drug development.


Asunto(s)
Hepatocitos/efectos de los fármacos , Nevirapina/farmacocinética , Esferoides Celulares/efectos de los fármacos , Acetilcisteína/química , Acetilcisteína/metabolismo , Animales , Arilsulfotransferasa/metabolismo , Biotransformación , Técnicas de Cultivo de Célula/métodos , Hepatocitos/metabolismo , Inactivación Metabólica , Ratas , Reproducibilidad de los Resultados
12.
Arch Toxicol ; 91(4): 1815-1832, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27590069

RESUMEN

3D cultures of human stem cell-derived hepatocyte-like cells (HLCs) have emerged as promising models for short- and long-term maintenance of hepatocyte phenotype in vitro cultures by better resembling the in vivo environment of the liver and consequently increase the translational value of the resulting data. In this study, the first stage of hepatic differentiation of human neonatal mesenchymal stem cells (hnMSCs) was performed in 2D monolayer cultures for 17 days. The second stage was performed by either maintaining cells in 2D cultures for an extra 10 days, as control, or alternatively cultured in 3D as self-assembled spheroids or in multicompartment membrane bioreactor system. All systems enabled hnMSC differentiation into HLCs as shown by positive immune staining of hepatic markers CK-18, HNF-4α, albumin, the hepatic transporters OATP-C and MRP-2 as well as drug-metabolizing enzymes like CYP1A2 and CYP3A4. Similarly, all models also displayed relevant glucose, phase I and phase II metabolism, the ability to produce albumin and to convert ammonia into urea. However, EROD activity and urea production were increased in both 3D systems. Moreover, the spheroids revealed higher bupropion conversion, whereas bioreactor showed increased albumin production and capacity to biotransform diclofenac. Additionally, diclofenac resulted in an IC50 value of 1.51 ± 0.05 and 0.98 ± 0.03 in 2D and spheroid cultures, respectively. These data suggest that the 3D models tested improved HLC maturation showing a relevant biotransformation capacity and thus provide more appropriate reliable models for mechanistic studies and more predictive systems for in vitro toxicology applications.


Asunto(s)
Reactores Biológicos , Hepatocitos/metabolismo , Células Madre Mesenquimatosas/citología , Esferoides Celulares/metabolismo , Animales , Bupropión/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Citocromo P-450 CYP1A1/metabolismo , Diclofenaco/administración & dosificación , Diclofenaco/metabolismo , Glucosa/metabolismo , Células Hep G2 , Hepatocitos/citología , Humanos , Concentración 50 Inhibidora , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Ratas , Ratas Wistar , Toxicología/métodos , Urea/metabolismo
13.
Stem Cell Res Ther ; 6: 90, 2015 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-25956381

RESUMEN

INTRODUCTION: The secretion of trophic factors by mesenchymal stromal cells has gained increased interest given the benefits it may bring to the treatment of a variety of traumatic injuries such as skin wounds. Herein, we report on a three-dimensional culture-based method to improve the paracrine activity of a specific population of umbilical cord tissue-derived mesenchymal stromal cells (UCX®) towards the application of conditioned medium for the treatment of cutaneous wounds. METHODS: A UCX® three-dimensional culture model was developed and characterized with respect to spheroid formation, cell phenotype and cell viability. The secretion by UCX® spheroids of extracellular matrix proteins and trophic factors involved in the wound-healing process was analysed. The skin regenerative potential of UCX® three-dimensional culture-derived conditioned medium (CM3D) was also assessed in vitro and in vivo against UCX® two-dimensional culture-derived conditioned medium (CM2D) using scratch and tubulogenesis assays and a rat wound splinting model, respectively. RESULTS: UCX® spheroids kept in our three-dimensional system remained viable and multipotent and secreted considerable amounts of vascular endothelial growth factor A, which was undetected in two-dimensional cultures, and higher amounts of matrix metalloproteinase-2, matrix metalloproteinase-9, hepatocyte growth factor, transforming growth factor ß1, granulocyte-colony stimulating factor, fibroblast growth factor 2 and interleukin-6, when compared to CM2D. Furthermore, CM3D significantly enhanced elastin production and migration of keratinocytes and fibroblasts in vitro. In turn, tubulogenesis assays revealed increased capillary maturation in the presence of CM3D, as seen by a significant increase in capillary thickness and length when compared to CM2D, and increased branching points and capillary number when compared to basal medium. Finally, CM3D-treated wounds presented signs of faster and better resolution when compared to untreated and CM2D-treated wounds in vivo. Although CM2D proved to be beneficial, CM3D-treated wounds revealed a completely regenerated tissue by day 14 after excisions, with a more mature vascular system already showing glands and hair follicles. CONCLUSIONS: This work unravels an important alternative to the use of cells in the final formulation of advanced therapy medicinal products by providing a proof of concept that a reproducible system for the production of UCX®-conditioned medium can be used to prime a secretome for eventual clinical applications.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina/fisiología , Cicatrización de Heridas/fisiología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Matriz Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/análisis , Masculino , Células Madre Mesenquimatosas/citología , Microscopía Fluorescente , Fenotipo , Ratas , Ratas Wistar , Cordón Umbilical/citología
14.
Chem Biol Drug Des ; 86(4): 578-88, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25600158

RESUMEN

Multiple mechanisms related to metastases undergo redox regulation. Cu[15]pyN5 is a redox-active copper(II) complex previously studied as a chemotherapy sensitizer in mammary cells. The effects of a cotreatment with Cu[15]pyN5 and doxorubicin (dox) were evaluated in two human breast cancer cell lines: MCF7 (low aggressiveness) and MDA-MB-231 (highly aggressive). Cu[15]pyN5 decreased MCF7-directed cell migration. In addition, a cotreatment with dox and Cu[15]pyN5 reduced the proteolytic invasion of MDA-MB-231 cells. Cell detachment was not affected by exposure to these agents. Cu[15]pyN5 and dox significantly increased intracellular ROS in both cell lines. This increase could be at least partially due to H2 O2 accumulation. The combination of Cu[15]pyN5 with dox may be beneficial in breast cancer treatment as it could help reduce cancer cell migration and invasion. Moreover, the ligand [15]pyN5 has a high affinity for copper(II) and displays potential anti-angiogenic properties. Overall, we present a potential drug that might arrest the progression of breast cancer by different and complementary mechanisms.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Cobre , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cobre/química , Cobre/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Femenino , Humanos , Células MCF-7
15.
Free Radic Res ; 46(9): 1157-66, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22612279

RESUMEN

The unique redox and catalytic chemistry of Cu has justified the development of novel Cu complexes for different therapeutic uses including cancer therapy. In this work, four pyridine-containing aza-macrocyclic copper(II) complexes were prepared (CuL1-CuL4) varying in ring size and/or substituents and their superoxide scavenging activity evaluated. CuL3, the most active superoxide scavenger, was further studied as a modulator of the cytotoxicity of oxaliplatin in epithelial breast MCF10A cells and in MCF7 breast cancer cells. Our results show that CuL3 enhances the therapeutic window of oxaliplatin, by both protecting non-tumour cells and increasing its cytotoxic effect in breast carcinoma cells. CuL3 is thus a promising complex to be further studied and to be used as a lead compound for the optimization of novel chemotherapy sensitizers.


Asunto(s)
Antineoplásicos/farmacología , Cobre/química , Compuestos Macrocíclicos/farmacología , Compuestos Organometálicos/farmacología , Compuestos Organoplatinos/farmacología , Piridinas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Radical Hidroxilo/metabolismo , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Compuestos Organoplatinos/química , Oxaliplatino , Oxidación-Reducción , Relación Estructura-Actividad , Superóxidos/química , Superóxidos/metabolismo , Termodinámica , Células Tumorales Cultivadas
16.
Food Chem Toxicol ; 50(6): 2180-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22525863

RESUMEN

Human exposure to cadmium (Cd) occurs via different routes, including diet. The increasing amount of data linking Cd with different cellular effects in the mammary gland justifies additional toxicological assessments using human mammary epithelial cells. This work aimed therefore to assess the cytotoxic effects of Cd in MCF10A cells and to characterize the cytoprotective role of the macrocycle [15]pyN(5) in the form of calcium salt. Cadmium chloride revealed to be cytotoxic to MCF10A cells, decreasing cell viability and proliferation in a concentration-dependent manner. Comparable dose-response curves and IC50 values (57-63 µM, 24h treatment) were obtained using the MTT reduction, crystal violet and BrdU assays. In terms of reactive oxygen species formation, only a slight increase in superoxide radical anion was observed at very high Cd concentrations (≥100 µM). Chelation should thus constitute the primary strategy to mitigate the cytotoxic effects induced by Cd in mammary cells. In this context, [15]pyN(5) which presents appropriate chemical and thermodynamic features was studied as a Cd chelator. This macrocycle (25 and 50 µM) significantly reduced or even abolished Cd-induced cytotoxicity. Protective effects were observed in terms of cell viability, cell proliferation and morphological alterations, being the protection mostly attributed to a chelating-based mechanism.


Asunto(s)
Cloruro de Cadmio/toxicidad , Quelantes/farmacología , Células Epiteliales/efectos de los fármacos , Compuestos Macrocíclicos/farmacología , Glándulas Mamarias Humanas/citología , Antimetabolitos , Bromodesoxiuridina , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quelantes/síntesis química , Colorantes , Relación Dosis-Respuesta a Droga , Femenino , Fluorometría , Violeta de Genciana , Humanos , Compuestos Macrocíclicos/síntesis química , Glándulas Mamarias Humanas/efectos de los fármacos , Especies Reactivas de Oxígeno , Sales de Tetrazolio , Termodinámica , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...